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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS.
TECHNICAL NOTE NO. 140.

GENERAL THEORY OF STRESSES IN RIGID AIRSHIP ZR-1.

Submitted by W. Watters Pagon,
Member, Special Committee on Airship ZR-1,
National Advisory Committee for Aeronautics.

The following theory wae submitted to the Special Committee
on ZR-1 on August 3, 1922, in those parts dealing with Primary and
Secondary Stresses, anl on September 20, 1932, in that part deal-
ing with the Effect of the Keel Girder., Since then minor changes
have been made in typography and arrangement, and some comments
added upon discussions by Professor Hovgaard, Member of Special
Committee on ZR-1, and Mr, C, P, Burgess, Aeronautical Engineer, in
his Design Memorandum No, 18, submitted to the Commitfee.

Primary Stresses was worked out as an individual check upon
the general theory as then presented to the Special Committee;
Secondary Stresses, as an attempt to evaluate this hitherto uncom-
puted portion of the total bending stresses; Effect of the Keel
Girder, to determine quantitatively the errors in the assumption
of plane bending as applied to this complicated steel-duralumin
gtructure; and a study of the proper wire sizes to make plane bend-
ing possible, now incorporated herein under Primary Stresses, was
submitted to the Committee on November 3, 19223, giving in tabular
form the size required for .each panel,

At geveral steps in the development of this theory there are
introduced small errors of assumption, but when the whole is
viewed in the light that the primary stresses aggregate in the
worst case only 4150 1bs. per sq.in. in a total of 16,390, and the
secondary stresses only 3760 lbs. per sd.in., it is clear that
even the aggregate of these errors (if they should be cumulative)
would be of small importance,
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SUMLARY .

Primazy Stresses.

¥ (4" - FJ'/A4)
T L +nl'y -nd' /Ay

n cosaé-g—(gh - %l cos & tand) + %- cog & sin® cos?d

¥, a a

ct
li

unit stress in any longitudinal, (tension if +)

unit stress in any disgonal, (vension if +)

bending aoment at cenier of panel between two main
tIansverses , (moment rroducing tension on top
longit., and comprezsion on keel being +)

shear in any parel, (+ i* down on lef% and up on right)

Giscance from neutral axis to any longitudinal (+ above
neus. axis)

distance from neutrsl axis to centre of any diagonal

angle between any panel and vertical plane

angle bztween any shear wire and ivs adjacent longitud-
inals (+ if counterclockwise measured from longi-
tudinel to wirs) o

ratio of medull of elasticity of wires and longitudinals

E3 E (diag.) E {(steel)

Ey T E (long, ) i (duralumin)
&1, = sectional area of any longitudinal
a3 = sectional area of any diagonal wire
8r = Becticnal area of fictiticus bar = nag cos3Q
L = distance between two main transverse frames
nJf= n%az%,cos€@ sind cos?g = Zacy, cosftand = Zafymh'/L

where

=t
[} ([ [ |

e D
Dk
]

=}
i

nAg= nZa3cos®e simfPcosd = I agcosptan®d = Tach' /L

b = length of any member of transverse frame, or i.e. width
of any panel '

h' = vertical projection of h = h cos6 , (%the sign of h!
being the same as that of its subtended angle, & )

Ip =% ay?

Ig'= 2 agy,® cos3g nlg' = I apy,?

For location of neutral axié, gce pages 9 and 10,
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SUMMARY .

Secondary Stresses.

moment of inertia of longitudinal, EE!

ee! T
Ieg = " " . " transverse member, ED
- _8¢ (F' & F")\ .
(23) Segt = 2% (Ft - ~L—E2 )\ - gecondary stress. at left
© nAgl Dg 7/ of joint E
- f F‘) " .
(23) Seen = =22 (F" - {F" + F')\ - gecondary stress at right
°¢"  mAgL De / of joint E
(24) Pget = flee! (aFt - 1.5(E 4 FE)W = gecondary shear at left
ee 3
nAgL _ Dg / of joint E
T . 4 t)..
(25) Pgen = 6 g8l (aF" - L5F" + ¥ )\ = secondary shear at right
nAglL Dg / of joint E

The stresses e, have & sign determined by the sign of the
moment and by the position of the channel considered with refer-
ence to the neutral axis of the longitudinal in guestion. The
moments are positive if counterclockwise., The shears are positive
if counterclockwise, also.

De = {2 + 1.5a) + 1. 5qcos2b. cosug

where q = IoqL/Ioorh; the angle ug is the angle between the

horizontal and the radius from the center of the neutral axis to
joint E; +the angle b is the angle between the transverse mem-
bers CE and EG and the tangent at joint E, and is & constant for
joints 4, C, E, G, I, K,

A1l other quantities used in the discussion are the same as
for the primary stresses, and where primes (*) are used, other
than as used in the primary stress equations, they refer to the pan-
el to the left of the joint, and where double primes (%) are used
they refer to the panel to the right of the joint.
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General Theory of Stresses in Rigid Airship, ZR-1.

Primary Stresses.

Assumption:- 41l transverse frames remain plane after bending.

Signs:- + indicates tension stress ard hogging moment
~ indicates compression stress and sagging moment,

The following discussion will be devoted entirely %o the cyl-
indrical amidshipe portion, bub may ezsily be modified for conical
segments fore and aft, Consider two adjacgnt transverse frames
and the longitudinals and shear wires between them. See Figs.1(a)
and 1(b). Let AM and A'M! be the transverses, and in order to de-
termine the relative deflections let AM be considered as fixed.
Call the bending moment at A!M', M, and the shear just to the
Tigdt of A'™', 4F. Under these forces frame A'M' will rotate
tErough an angle ALg/yo <rTelative to AM and will deflect down-
ward -a distdnce A y(a + deflection).

Let Aypy = deflection due +o moment, of frame A'W?
A y¢ = deflection due to shear, of frame A'M!

then Ay = Ay, + Ayg

Since radius of curvaiure is large compared with L,
Ay /L = $0Lo/v, = 3&

See Fig. 3,
Change of length of any disgonal =
= ALcosd + Avycos§ sind

Since frame remains plane after bending,
AL/y = ALg/yvo = g

Hence change of length of diagonal =
= ygeosd + 1glcos 0 sing + Ayf:cose sind

= g{ycos® + 3Lcos@ sind® ) 4+ Ay cose sind



Therefoze:—
Total stress in a diagonal =
E
(1) =T = -—‘E‘l—- [glycos® + LLcosg sing ) + A Ygcosg 8ind]
)

Total stress in longitudinal = =

(11) =8 = Bya; AL/L = Ega;gy/L
. Shear in panel = F = sum of vertical comp. of diagonal stresses
(I11) F = £ Tsin® cosd

Moment = M = sum of moments of diag, stresses about neutral axis
(1V) M ISy + ZTcoady

Solving equations I and III:

F = 248

=— [Zagcos® @ sing cosé - + JL Taycos®e sin’e cosd]

+ %;QAyfzadcosmosz gsin2d
Call J = 7 agycos® sindcose =
= I agycos® tandcos § = Zagycos*d h'!'/L
and 45= I agcosdcos®hsin®g =
= I agcos® cos?e tan@= Lazcos*d h' 2/L?
Since tand cos e = h'/L (see Fig, 3) It should
be observed that h' has the same sign
(+ or -) as tan® in this expression,
then % = g(J + 3LAg) + Ayphg

(V) and Ay = %d[_ﬁl - g(J + 1LAg)]

a
Solving equations I, II and IV:
E E.
M =—i£g Zaypy® + -I-f-lg Zagy®cos®® + 1Esg Tajycos® cosg sind

Ed 2 s
+ -ITAYf zadycos ® cosp sind |

= 2 = 2 3
Call 1 Z.a.Ly and I g ra dy cos3d
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Svbetitute equation V: then equation II:
'L [AgM ~ FJ] sL

S =
- - F Eay

then g =

Call E4 = nEg,

then § = 2gY (f - FI/Aq)
I, + nIg - nd /A4

and if s = unit stress in longitudinal

- v M~ FJ/a5)
(VI) then 8 = d2
IL -+ nId - nJ /Ad

From equations I and V:

IL - . E5 .FL
= E , iLsi —= [— _ 1 i
P 38 (ycos® + LLsin® cose )+ i EEd g(d + 1LAg)]cosfsim
T (AgM - FJ)(ycosd - Jcos@ sind/Ag) F _
°F a.cos® > + K‘& cosg sind
a Agly + n8yIy - nJ

and if ¢ = unit stress in a diagonal wire:

_ AM - FJ .. J cosg sin®\ F
then t = ncos2Qy d — {1~ 0 .+ —C08 g sindcosd
LgIy+nAsT4-nd Ag ycos 0] Ag
VII) t = ncos®gs(1 - Lcos gsin®\ L F . .o sing cosd =
&g ycosd / Ag :
t I 2
= nscos?® (1- —S8- )4 Eh cos®

YA dL / A dL

These equations VI and VII are the general equations for stress
in any longitudinal or diagonal, regard_less of what wires may be
acting or not acting. In every panel there are two symmetrical
wires, one with a positive angle ¢ and the other with a negative
angle, Each of these will appear in the summations expressed by

I3, Aq and J. However, in 44, cosd- is always positive, and
8in®¢ must be positive also, whatever the sign of &. In J,

cos2® 1is positive but sind is both positive and negative for the
two wires in the panel, However, these wires have a different y
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and therefore do not cancel out. In an exactly symmetrical ship,
with wires acting symmetrically in upper and lower portioms, the
corresponding upper and lower panels would have positive and nega-
tive values of y, so for this case the term J would disappearl.

If it is found upon solving for these stresses t, that cer-
tain wires have a compression greater than their initial tension
before loading, then these wires must be omitted from the tabulation
and the computation revised, Inasmuch as the J term in the equa-
tions VI and VII has a real value in rigid ships as designed cus-
tomarily, the following simplification has been made which substi-
tutes for the J terms a new J' term, which in general is zero
when all wires are acting, The method of using the formulas would
be to assume that J' is zero, and then if this proves not to be
the mse a revision can be made to allow for the wires not acting.

Consider the expressions J and I4 - J%/ag

‘Let ¥y = yp + 3b' = height of wires at center of frame space

where y = = height of the corresponding longitudinal
' to which the wire connects at the trans-
verse in question.

Then yg= Vg~ Ygh'+3h'%

and Ig= 2ad§08%@ Y§*= 15— LJ‘+~%I?Ad where I'y and J' corres-
pond with I and J but apply to the

center of the frame space instead of the
longitudinal.

Also J = Zagypcos® h'JL = J' - lA4L
(VIII) . ”
Then Id. ~-d /Ad = I'd - J1 /Ad
(IX) and J/&q = J'/Aq - 1L

Then let M' be the moment at center of frame space
or M' =M + IFL
(M* - PJ'/A,)
(X) then s = 3L 4 from equatioms VI, VII, VIII, and IX,
I.L+ nIdl -nd?t /.A.d .

F h'cos?d

(X1) and
AgL

ct
fl

2 8 Jth
ncos“d — e
VL(Em ik )

of action, then it is clear the J' <for every panel is zero (pro-

If, now, all of the wires carry compression without goin% out
o
vided the two wires in the panel are equal) becuse the resrective
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values of %an¢@ and tan(-¢) cancel each other. In such case
these two equations reduce to the simple form

I+ ni'y
! 2
(XIII) t = ncos2P s Im + Fh'cos29d
¥ AdL

If some of the wiree go out of action, there will still be
many panels where the terms still cancel out. It is readily seen
then that J' applies only +to the wires not acting, and has a
value equal to mimis the summation of the wires not acting. It is
so small usually that it may be neglected. See comments in Design
Memo #1876n this subject.

Therefore, in computing stresses, J' would be assumed to be
zero and the stresses worked out by equations XII and XIII, Having
solved for those which would most likely go out of action J' can
readily be figured and corrections easily made to all the values
previously figured, and the remaining bars computed.

Equations XII and XIII prove the equations on pages 18 and 3¢
of Design Memorandum #7 and alsc prove Professor Hovgaard's theory,
but they impose on the latter a condition {which was suggested by
the British investigating committee), namely that the moment in the
frame space must be computed at the center of its length, and that
the ordimates for the fictitious bars must be measured here also,

These equations given above depend upon the assumption that
the transverses Temiin plane after bending (i.e. that the apices of
the transverse remain in a rlane, which rotates however about the
neutral axis). They are general in that they cover the stresses
due both to bending and shear (to the firs%t order), and the resulis
check against the partial results obtained in the British and Ital-
ian methods and against Professor Hovgaard's theory. They also
check the British theory of the proper method for using the latter.

All values of Ys Yms YL> Yo, €%c., are measured from the neu-

tral axis of the whole frame, not that of any part of the trans-
verses, longitudinals, or shear wires. ’

Let us congider a 1little further the expression =nl'y:

2 . '
Exranding, nl'q = n Tagypcos3d . Following Professor Hovgaard's
suggestion, let us call the guantity nagcos®® = ap, where af

is the area of a corresponding horizontal fictitious bar having a
height of ¥m above the neutral axis, i.e, located at nid-height
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(X1V) 2
of the panel. Then it is easily gmen that nl'y = Zary, which
is simply the moment of inertia of these fictitious bars,
In a similar way it is seen that
. 2 2 2
(XV) nd' = Zagh'y, also nAg = Zach' /L and nlg = Zagy

The term A3 is a shearing section modulus,

Neutral Axié.

In the foregoing all dimensions ¥y have been measured to the
neutral axis, but the position of this axis has uot been deter-
mined. For the longitudimls alone, it would of course be at their
center of gravity; for ithe wiree alone, at their center of gravity;
but for the whole aggregziion it is not yet clearly defined,

Equate 2ll horizontal components (i,e. components parallel to the
fore and aft axis of the ship) of stresses in wires and longitudi-
nals to zero. Then, )

ZS + ZITcos® = O
MY-FJT /A4

J'G. FG
n=—=)4 — =
&g  Ag

(XVI) and

(= aLyp+n Zadymcos% - 0

I;+nl'y-nd"’ Q/Ad
[where G = Zayc0s2® cos 6 sin 9]

When all wires are acting, and the wires of each rair are equal,
then G must be zero. Therefore the last two terms are ZeIQ,

(XVII) and Zapyy + n Zagy,cos®® = 0.

Of these, the fi-et is the statical moment of the longitudinals and
the second that of the fictitious bars aboui the neutral axis,
therefore the neutral axis must 1i® at the cenver of gravity of the
total assembly of bars and wirzg., Waen some of the wires are not
acting then G will not be zero, but will have & term in the sum~-
mation for everv wire out of action. Substituting a- and h' as
above, then nG = Zagh'/L and becuse tne h' in tﬁese panels

is small the value of G will be emall,

Inasmuch as equation XVI does not readily lend itself to solu-
tion in simple form, it will be assumed that € 1is so small that
it can be neglected (this error being quite small). Then omitting



from the second term those wires which do not act,

* 1
3 —
.‘(XVIII) Zarpyy + D X a4V, co8 =0
where I' represents the partisl summation.

Now let I, =I; + nl; for all wires that are acting, taken about
the. center of gravity of longitudinals
and all wires

and Ip = Iy + nIy for all wires that are acting, taken about
the proper neutral axis for that condition.

Then since the moment of inertia about two parallel axes differs.

by an amount equal to the area multiplied by the square of the
distance x, between these axes: '

Ip=1I - x*( Sap + ns agcos o)
(XIX)

=1, - x2( Lag, + Tag)

N
Substituting in equation XVIII the values y; + X =y; and

n
Yp + X =V, there results,

' - A
(xx) x = ,20LYL +  Taf¥p
- ‘ta; + Zag

Applying equation XVIII to this numerator, there remains only the
statical moment of the wires which are out of action, and the term
is minus. The new form of the numerator is merely this statical

moment - Egﬁafyﬁ -

f
L 2s¥p

and X = -

Check on the Foregoing Theory.

As a check on the theory just outlined, itwo methods of test-
ing it were applied: (1) by equating the wire stresses due to
vertical sheaT with those due to longitudinal shear; (2) by in-
vestigating the condition of equilibrium around each joint.
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Longitudinal Shear.

Consider the forces aoting on a single transverse frame above
a horizontal section cut through any panel (See Figz. 4). The forces
replacing cut bars will be those on all longitudinals on each side
of the transverse, together with all wires in the panels above the
one cut. Then in addition will be the four wires in the cut panel,
one on each side of the frame at each side of the airship. Let all
letters having subscripts be those in the left hand panel corres-
ponding to similar unmarked letter in the right hand panel. Partial
summations are designated and include only those bars which

z
are in the panels above the oht panel,

Zpsa.L + zpta.dcos@ + 2f
-Ipstap - Zpttajcosd - 3f' =0

Multiply and divide all terms of the summations of & and s' by
y. Then since S/YL is a constant it may be factored dut, and

t -
Z sa; - T s'a; = (= - 5) 5 ay
p L p °L ¥, ¥ P L'L
From equation XI,
Zptageosd - Iptlagoosd = -2 Epnadcosﬁmy;giaEpnadcosséoose tand )
RS2 Ta g
s! Ji 3
- ?’-I:( anadcos%jﬁl—gz phagoos® cose tand )
F 3 F‘z 3
+ 4 Zpoos @cosetan¢~-zg p2acos” pcosftand )
‘ -
(XXI) Thus, 3(f'- £f) = %(Q - ;T- Zp2¢ cosftan d) - 8l (g- %.3_ £ppC08 6 tan b )
L d L. fa
+ £ Zp2fcosg tand - = Zrn2ecos B tan d
where Q = zﬁaLYL + Zagy,

But, from equation XI again,



- 13 &«

H
3(ft - £)= 3(T'cos ¢ a3-Tcos ¢ ag)= 3ar 5 (Y - g-l-cos gtan )

Y1, a

s AR F! ¥
—Z&fyL(Ym- Ad°°8 e tancb)-;-a'n—AE apcos @ tan@-ZI';A—dafcos 0 tand

Subtracting the second equation from the first will glve a differ--
ence, which, if the two values of f' - £ obtained from longitudi=
nal shear and from vertical shear are identical, will reduce to zero.

1
(XXII) Thus, differ‘ence = ?_I:(Q.;.Zafym- ;—IE( Zp@gtangcos g +2agcos @tang ) )

%(QHZ%%— %:;( Zpartan cI> cos & +2a.;,008 § tand) )

Enzd( Iparcos @ tand +2agcos € tang )
Pt

- = ( T.a.c08 ctang +2a.cos Htangd )
ndg “PT £ _

If wires of each pair in a panel are equal, then Zarcos @ tan @ is
zero because ¢ is both + and -~ ; but this is tTue only if all
wires are acting, In such case J' and J, are both zero.
Therefore, applying equation XI,

_ M-y
Difference = --——-i-——'( TRV + TV t+ Be.g¥m)

- -F-DZ—E—'-_—(Zafcos 6 tan ') since tan ®'is +
d

tan § is -
where I = Iy + nly. Now let the parenthesis of the moment

term be Q' where Q' =Q 4+ 2a.y,. Then since M's= M, +L(F'+ F)

1
(XXI1I) Difference = (F' + F) (LQ'/2I -~ gégcgz: tan®’,

Therefore the parenthesis must be zero, and this term bhas in it on-
ly terms relating to the structure itself , without regard to the
bending moments or shears,

(XX_IV) Thus , Q' _ 2afcos 0 tand -

31 . nAd

This formula applies to primary and secondary wires, and if we
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let af be the area of a fictitious bar corresponding to the primarv
wires, and ag be the area of a fictitious bar corresponding %o the

secondary wires; and if we note that a horizontal section one panel
length L, 1long will cut two primary and four secondary wires on
each side of the ship; then the formula becomes

Lo' 2afcosd tan ¢, 4afoos ptan By o

XXV -
(XEV) a1 nhsy DAg

Noting that ¢p and dg have different slopes,

then, cosgtand,= h'/L and cos @ tan gg= 2h'/L
(XXVI) 2 t

and, a.? + 4&? = nigl —9--

41 h!

From this equation XXVI it is possible to compute the sizes
of fictitious bars, thet is, the siges of wires bOoLh primary and

secondary, that must be used in the ship to cause it to deform in
accordance with the plane bending theory. The equation contains
the terms A3 and I which depend upon the wire sizes, x&Beile

first entirely and the latter to a slight extent, therefore it is
necessary to have some assumed values of wire sizes in order to
apply the equation. The relative sizes of wires, one to another,
are dependent only upon the statical moment Q' of the cross sec-
tlonal area above the panel containing the wires under considera-
tion, and the height h!', of this panel. The following study

shows that such a revision of the sizes relative to one another will
not change Ag.

Let Aq be the shearing modulus for the assumed wire sizes,
Q .
and Ay the same modulus computed from the revised sizes.

a ) . 5 :
Then Agn = Zapn' /17 + Zap(2n!) YL’ = %’Ez(alf) + 4a )’

Substituting equation XXVI above in this equation

' c - = t
then, Ag = — p22al , 2 pe® _g ZQ'RY
nL 41 ht 41

(Note that in deriving equation XXIII, the minus signs were elimi-
nated for h' thus, the terms of this summation do not cancel.)

Since Q' = Epa.y for all members above any plane of shear
then, ZQ'h' =ay, (h! + h! + h! + eta) + ay, (B! + h! + etc. )sete.

= a,y; + &7, + eto, = Zay® = 4I because Q'h' appears
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for each main wire and there are four wires per panel (two on each
side). Therefore, Ag = Ad; which proves the statement at the be-

ginning of this paragraph, that revision of the wire sizes by the
formula given will not change 44 and the other computatiouns
which depend upon it.

For the panel MN of ZR-1 as designed, since there_are four
pairs of wires in place of the single pair in other panels,
LQ! _ Bagpcos @ tan dpy . g

2T nhg

the formula becomes

L2 Q!
But, cos 6 tan oy, = 4h'/L therefore, lfSa,mf_?L = nchl .,%,- .

The attached Table I shows a computation of the theoretical
wire sizes for ZR-1. In making this computation the average value
of wire size in each panel (for example, the average of wires in
AB and BC, and the average of EF and FG, etc.) has been obtained.
Due to the fact that intermediate longitudinal and fictitious bars
occur at center of panel, the main primarv shear wires would change
size at the intermediate longitudinal, although in the actual ship
the size remains constant, Bv taking the Q' term to include one-
half only of the ay term for the intermediate longitudinal and
fictitious bars in the panel which is being considered, this aver-

age value for ag is obtained. It will be noted in the last col-

umn of the table that the results are checked up to determine their
correctness, and an error of 5 per cent appears, which is due prob-
ably to the fact that Q' 1is not quite zero, or in other words,
that the neutral axis as computed and used in the design of the
ship is not exactly at the center of gravity of the cross section,

There has been much discussion of the so-called "ideal ship,"
which would consist merely of a symmetrical, polygonal cross sec-
tion, with uniform sizes of wires and longitudinals in all panels,
The polygonal cross-section would of course be regular, so_that a
circumscribing circle could be drawn through its apices. Let us
assume that the shape is symmetrical about aivertical.axis, which
involves an error of only one or two per cent from the 25-sided
figure customarily used for rigid ships, Then from equation XXVI,

g 2
a? + 4af = nagh Q' _ O
4Int 4Inh!

P ] 3 1 8 2
T (a; + dagp)nt’ = gh, (ap+4ag)3 Ih'

since the wire sizes are constant in all panels. Thereforse,

XXVII) 2Ih! = Q' Zh'® where the summation is for both sides of ship

ut, h' = hoos §, ¥p= Rein 6, ¥y~ Rein(g - a) (See Fig. 5).
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Hetoe, I = a.LR:a Yein®*(0 - a) 4 Ea.fﬁa s ain’p
Let the number of panels in a quadrant be
N;=;1N’ for the whole skip,

then rein®g Scos® 8 , by symmetry

Zeirfe =N - 3cos®6 , for one quadrant
hence, zsin®@ = Zcos® 6 = LN, for one quadrant = 3N for the .

’ wnole ship,
Thus, I = 2NR® (a.L + Zag)- By similar proof,

Qt = Raszsin(e - a) + 2Rag Zo8in6 + 2agRsin @
Referr_ing to Fig, 5, Zéhsins = ¢! and Ephsin( g -a)=c
Thus, Q' = (arc + 3agc! + Rachsin 6,)R/h = (af + 2a;)Rc/b
And substituting these values in equation XXVII,

4NR®? (a, + 2a¢)hcos B = %q(aL + 2ap)B° 2N = ¢ W(ay, + 2ar)hcos B

since ¢ = 2Rcos 6;. This being an identity, it is clear that a

uniform size of wires, both primary and secondary, in all panels is
the one requisite for plane bending in the ideal ship. Such a ship

would of course have ail longitudinals of equal size, but only

slight error will be introduced if the main and secondary longitud-

inals are made of differen: seoction, proviced each set are of uni-

form size, A further discussion is given umder the caption "Effect

of the Keel, ®



Table I,

2
. . = P _ ndgl ! s
Theoretical Sizes of Shear Wires from Formula a,f = —r_—I P4 K;- - Lkif
5:) 5 903 . 9 Ai?a :,'f \ -a? h'2 uxagh'z a.Ly2 ary
& {Hal on o or y Ym h : or
3 §§ o iz on I for for or
- Mem., wires 4 wires wires | a8Vp &f ¥y
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Eguilibrium of a Joint.
(See Fig. 8)

Consider the forces acting on any main joint of a frame.

Let subscoript letter "e" denote quantities in panel belos jolnt
and "d" above joint.

For equilibrium

T"e cosd+ Tacos@d + 8 = TeCOSQe + TdCOSQd + S

From edquation XV,

\
T ,cosPe= nadcos3®5§¥(yme— %%coseetan§%+§7adcos3®ecoseetanQe
L a a :
tang', = ~ tand, and -tanéé = + tandy
Therefore,
(Tt - T )cosd_ = a 8'-8\_a_ cos§ tano [(S1di 4 ST
e e e feyme< v. ) fe e B(VLAé YL%d/
s !
+“<EK§%5§E> a5 COSE g tand,
T— vl s8JF Y\
T! - T_)cos = a §——§>—a ang ( 2—+ +
(7§ - Ty)eosdy = ara¥nq( v, /2£a®%0at @d(yLAd Yy

‘ -
__<n§, + n§d> apgcostgtandg

S' -8 = azy (ST_S\
L'L
N Yy /

. Adding these three equations will give an expression which must .
reduce to zero if the joint is to be in equilibrium.

XXVI) Sum = (S‘-8\ (2 4 a
Ty,

; “P1eme fa¥ma * 2¥y)

. 1
1 1 . '
+ afpCosbgtandg ¥ + Foo_s'dy _ sd )

nAf mniy YA Yifa

F* F s'Jji sd'
- arqcosggtandy (nAé + nhg + YLAé + YLAd>




- 20 -

“hen all wires are acting, J' = 0 and summations for both frame
spaces are equal (i.e. A% =4, etec.)

Substituting these values and value of 8! and s from equation
X,

LXVII) Sum = (X

-y _
T ) (ape¥me + 25q¥mg + &1¥y,)

Fi.F
* Bhs (apgcosfotand, - apgcosbytandy)

But, M'° - M.-.-»-—Lg-(F' + F)

When ag, ap and ¢ are constant,

_ L
Sum = ~ {F'.F) ng(afyme+ e¥ma+ 2171

_ 8fh
nd gL

(cos8s ~ cosfgq)]

For the "ideal ship”

I = 2R (a;+ 2ag)

2 2
RXVIIT) Ay = Zaccosed I-T:; = 4Na, 2o

Lz
Then, Sum = -~ L(F'4 F) (afyme+;afymd& aALYL ~_(cosee—_cosed} \
4NR (ap+ 2a¢) 4Nh /
- L{F', F)

_ om? -
4NR?(aL+2af) [af(yme+ Vg = (cosee cosed)

R2
+ ap(yy - E—(cosee - cosBy)l
R(cosee - cosBy) = g(sinee + 8infy) See Fig. 5.

e~ Tme Rsinfy = ¥pq
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Therefore
_L(F'4+ F)
4NR?(aL+2af)

Sum = [af(yme+ Ymd = Yme = Ymd)

Yme * Ymd
+ aglyy - SRERE) ]

Zero,

Thie further check on the theory showe that when the longitu-
dinals and the shear wires are of constant section from panel to
panel, i,e. in the ideal ship, the assumption of planar bending is
completely justified. Conversely, it is clear that even though
the longitudinals be averaged and used thus (which probably intro-
duces only a small error for all longitudinals above the ones at
L and an appreciable error for the keel girders), still unless
ar for the two adjacent panels is constant the guantity derived
above does not reduce to zero. Therefore, the planar theory can-
not be true for a joint where the wire size changes, though it
still holds for all panels below such joint and above ag well.

General Theory of Stresses in Rigid Airship, ZR-1.
Effect of Keel Girder.

There has been much discussion of the effect of heavy keel
longltudinals M and M' and of the apex girder N, of, the keel
corridor. These three longitudinals are connected by diagonal
shear wiring to form a triangular girder in themselves, and of
course the shear wiree transmit longitudinal shear as well, so
tggt the N girder also contributes to the general strength of the
ship.

In order to analyze the stresses of the combination of these

- with the so-called "ideal ship" consigting of a group of girders
at the apices of a regular polygon of 34 sides (which is substan-
tially the same as one of 235 sides, if the two M girders are
looked upon as one and the same, but split apart and connected to-
gether by transverse ties - since by symmetry there can be no shear
between them), let us look.at the Bistory of the type. Starting
with merely an elongated gas bag with a single car suspended by a
plurality of inclined suspenders, the first logical step was the
introduction of a keel, or distributing girder, whose function,
like that of the stiffering truss of a cable suspension bridge, is
to transform certain loads concentrated at a few points into a un-
iform set of loads on the suspenders. In this case all shears and
bending moments produced in bringing these two sets of forces into
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equilibrium were carried by the keel girder. Next the suspenders
can be looked upon as 3 set of rings encircling the g&s—filleq en-
velope and carrying loads to it in much the same way as Ehe rlpgs
of a telerhone cable encircle and transmit loads to the "messen-
ger" cable. The next logical step is to provide shear wiring be-
tween these rings, or transverses, so that thev form in themselves
a rigid structure, connected to the rigid keel by a set of rigid
vertical suspenders, so that both structures deflect 1§entically at
the transverse frames. This type of ship was the earliest form of
rigid. The last step was to place the keel within the clrcumsgrib—
ing circle of the "ideal ship,” but structurally this bhas no sig-
nificance other than in the details of the computations and in the
diminished effect of these keel members due to their lessened dis-
tance from the neutral axis, .

For simplicity of conceptionciet us adhere to the earlier type
with the suspended keel, but at the same time we will hold to the
true dimensions of the later type of "intermal" keel. For the
rresent, also, let us assume that at all transverses the entire
structure is so held together by the transverses {assumed to be in-
" capable of distortion of shape in their own planes) that every Part
of the compound ship deflects alike at any one transverse; holding
for later discussion Mr. Burgess' proof that the intermediate trans-
. verses are incapable of exerting sufficient force on the keel to
do this effectively.

e can then, in the light of the previous discussion, think of
the compound ship as being composed of three structures, all rigid-
ly connected at regular intervals so as to deflect identically at
those points; the three structures being,

(a) the "ideal ship," composed of 34 sides and 34 longitudi-

nals A to M, the two M girders being joined into one
irder ?f cross section identical with that of the others,
A to L);

(b) the keel, actually within the same but imagined as though
suspended below it, and composed of the N girder and of
two partial M girders having each a cross section equal
to the actual section minus that portion which is consid-
ered to be contained within the M girder of the ideal
ship;

(c) a girder, somewhat of the order of a reinforced concrete
girder, consisting of an upper portion consisting of the
girders of the ideal ship (simulating the concrete) and a
lower portion consisting of the keel (simulating the steel
reinforcement), both of which parts are connected by shear
wires to transmit the longitudinal shear.

Let the subscript "I" denote —members and quantities that deal with
the ideal ship; "k", those that deal with the keel; "g" those that
deal vith the girder of case (c) above. Where no subscript is used
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it is to be understood that the quantity refers to the whole ag-
gregation or to the summation of the others.

Thus, I =1I; + Iy + I, feferring to the moments of inertia

W =Wy o+ W+ W referring to the proporticnal load-
ings.
If any joint of the compound ship deflect a distance A
_ k% klwi  klPwe
EsI;  Exlx  Eglg

where k = 1/48 or 5/384 etc.
n = 3 or any other numbser.

Becauese all three structures are similarly constructed of wires
and duralumin longitudinals, Ej = Ey = Eg

Thus, i _ ¥k _%g &
I4 Iy I’g I

i

w w
T'e

12]
li

W

]
=
'

Also M =ocl®w XM

i CLm‘Wi Hk = CLka Mg = OLmW

where "e" is a constant, such as 1/8 or 1/4

m is 2 or 1 or other number,

. M M M b4 M M
Th £ = = — o . - =
us, My Wy = fIi ¥y = wwk = IIk Mg = wwg = IIg

Let, in general, f be the unit stress at distance y Irom neu-
tral axis

_ Ei | M M M ¥

. : £, o= Ky o Ff = 2fy ==
1,177 K« IkYk e g Igyg 108

Then, f

¥y being measured from center of gravity of wires and longitudi-
nals of the ideal ship; V¥V from center of gravity of keel; ¥y

from center of gravity of wires, longitudinals of ideal ship, §nd
also the girder N and the "girder-portion® of the two M girders.



Let Ai = area of two girders M included in ideal ship
Ai = area of two girders M included in keel alone

. i

Then Am + Ai = Ay = area of two girders M, total. Of course
the area of the two M'e which enter into the two fliangss of the
girder of case (c) are the same areas; namely, Aé being that
part of the arga which enters into the total area of the top

flange, and A, Tbeing that part which enters into the total area

of the bottom flange. That part of the area which is in the tor
flange would receive tensile stress for hogging moment, whereas
when it is considered part of the ideal ship it will receive com-
prression; that part of the area which is in the bottom flange
would receive compression for hogging moment, and when it is con-
gsidered part of the keel it will likewise receive compression.

Therefore, to find the total stress in the members M we
must find the total stress on each imaginary part by multiplying
%ts area by ite respective stress and then adding the two results.

hus,

_® = k k i s 21l o_ M
F kam.;.fg_Am.;.fiAm-ngm—-f(A

k i 1
m(yk+yg) + A (y;- Yg) )
In this eduation ¥k is the distance from c. of g. of keel to N;
¥ is the distance from c. of g of girder (which is the same as
the c. of g. of the compound ship) to c. of g. of the keel; v;3
is the distance from c. of g. of ideal ship %o M; and finally yg
is the distance from c. of g. of girder (or compound ship) to

c. of g. of ideal ship, or in otber words it is the amount which
the center of gravity is displaced in the ideal ship if the keel
girder areas are taken into the calculation. Therefore,

Yg + ¥ = distance from M to c. of g. of entire compound ship
¥i - Vg = distance from M 1o c. of g. of entire compound ship.

Therefore the equation above can be writien

M k i M
-F = Ely(Am 3 Am) = T’Yﬂ.m
and dividing through by A,, then f, = %y where fo 1is the com-

pression per 8d.in. over the whole section of the M girders and
vy 1is the distance from M +to the ¢, of g. of the compound ship,

: In other words, the actual stress developed in M is identi-
cally the same as though the compound ship were figured, using to-
tal moment of inertia, total moment, and distances y measured




- 285 -

from neutral axis through the o, of g. of the whole ship. From
which it follows that addition of a kgel to the ideal ship does
not invalidate the theory of plane bending, provided the shear
wvires are adequate.

Considering now the N girder, at ths top of the keel, it
is cdlear that none of its cross section enters imto the ideal ship,
but the wholez section enters into both keel and girder. Further,
it is clear that for a hogging moment, ite stress when acting as
top member of the keel ie tensile, whereas its stress as:part-of:
the bottom flange of the compound girder is compression.

Therefore,
-F = f A, - DA, = ApM(y, - Ve /I = Ay/T

where y is the distance from N +to the c. of g of the “"girder’”
or of the compound ship. Also, as before, fg = My/I, where £,
is the compression over the whole section of the N girder, Which
again is in accordance with the plane bending theory.

Mr, Burgess has shown that the intermediate transverses arc
not of sufficient rigidity to cause the keel to move upward equa.l-
ly with the other longitudinals, although undoubtedly the tension
of the gas cell wires and of the envelope both tend to cause up-
1ift. However, a correction can Quite readily be made for this
divergence from the assumption of identical deflections, by apply-
ing the theorem of three moments; and moreover, the stresses are
secondary ones and not of great magnitude.

Let us now consider shearing stresses and deformations. There
#ill be no longitudinal shear in the panels of the ship due to the
bending of the keel within itself, but the wires connecting N
with M and M' will transmit sheaT so as %o permit N %o act with
the ship in bending more or less completely, as jJust outlined. In
the ideal ship the longitudinal shear in a panel length on the
wvires just 2bove M and ¥' will equal

d. i _.d i L DU |
Lipfidm = L Myyidy/Is = Tyibn/T = 18Q/T

where § '= shear at the frame space in Question, and Qj = statical
moment of A, about c.of g of compound ship.

In the girder of mse (c) the longitudinal shear in a panel
length on the wires just above M and ™' will equal

d(flge. str. af,, .k aM k _ &
religeett) - e (af 4 a,) = ETEG + An) - 199/
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wggre 8 =shear, as before, and Qg = moment of keel, i.e. of
Ay + 4,, about ¢. of g. of compound ship.

Therefore, the total longitudinal shear in a panel length on
the wires just above M and M' will equal the sum of these

i
= 15Qy/T + LSQy/I = LSQ,/I where Q, = statical moment of

¥, ' and N about the c. of g. of compound ship. This again is
the same result as would be obtained by computing the longitudinal

:ﬁear in the compound ship in the usual way by the plane bending
gory.

The discussion, however, thus far has pre-supposed that for
the girder of case (c) the web connected the c. of g. of the bot-
tom flange to that of the top flange, directly; and from this
c. of g. the stress would radiate to each member of that flange.
In the actual compound ship, however, it is otherwise. Shear from
the keel accumulates at M and M' and then travels circumferen—~
tially to L and L', then to K and K%, etc., up to A. Let us
therefore discuss the modifications involved by this path, but in
80 doing let us only discuss “girder" stresses, as superposed on
the already existing stresses of the ideal ship which have been
previously discussed in the first part of this memorandum.

If the upper flange, i.e. the ideal ship, has all longitudi-
nals equal, of number n, then gach longitudinal will receilve
one nth part of the shear LSQk/I, and the longitudinal shear

#111 diminish upward equally from panel to ranel by two nths.

If, as in the actual case, each main longitudinal have one mth
rart and each intermediate one pth part of the flange area, then
the longitudinal shear will diminish upward two mths and two
pths alternately. In the first case the reduction of shear is
linear circumferentially, since all pancla have an equal height

b, and in the latter, while the reduction is zig-zag, it will be
linear every two panels, and can therefore be considered circum-
ferentially linear, very approximately. If the wires whether main
or counter, in all panels are equal in cross section, then their
elongation and the joint deflections due to longitudinal shear
will be linear circumferentially, provided that the counter-shear
wires act either in all panels or in none. But a circumferenti-
ally linear deflection, when projeeted on the diameter of the
ship, is no longer linear, therefore the shéar deflection due to
that part of the shear wire stresses which is caused by shear

from the "girder" action, is not plamar. I% is, in-fact, the curve
obtained by projecting a helix of constant pitch on a plane through
its axis. However, superposition of non-planar shear deflections
upon planar bending ones does not in itself invalidate the bend-
ing theory.




- 37 ~

Let us now consider the effect of this method of transmitting
the "girder" shear around the perimeter upon the longitudinals
. themselves, If all countsr-shear wires aTe acting, then each ten-
sion wire will transmit its stress to the adjacent compression wire,
less the nth part that vasses into the longitudinal at the joing;
and vice versa. Therefore, all longitudinals above M M' will
get an edqual tension (for hogging moment) and a plane section will
deflect as a plane moved parallel to itself; but N, Dbeing com-
rression, will not deflect in the same plane, and M and M' will
move an intermediate distance, having tension on that part of their
area which is in the top flenge and compression on the remainder.
If, on tke other hand, the counter wires do not act, then the ten-
silon of each shear wire must be carried in compression back through
the longitudinal just above it, in order %o transmit shear to the
next shear wire, This will cause streszes in the longitudinals
garying linearly around the circumference, which cannot therefore

€ planar,

Hence, while if girder stresses could be ideally distributed
tc the c. of g. of each flange, the bending and shear deflections
would be planar, for ccnsiant wire size, still this cennot be done,
and therefore the actusl distribution of these stresses will be
somewhat out of a plane. The resultant error, however, ie small
and the plane bending theory is. not many per cent in error as re-
gards the stresses in longitudinal girders.

Inasmuch as the deviations from plane bending are due only to
shear deflections, the resulting errors will be only at frame
Spaces having high shear, therefore it is to be expected that at
the concentrations due to the suspended cars, or at a srace where
there is reversal of shear, would be the only regions of aprrecia-
ble error, shich is trué of any type of beam, in general, carrying
concentrated loads. A% such points the effect of excessive shear
deflections will be to diminish the rate of change of stress in N
and to a less extent M and M!,

In all the above it has been assumed that the wire sizes are
constant in all panels. If this is not true {(and it is not in
rigid airships as actually built), there will be introduced an er-
ror of the same order as that in the ideal ship.

In the light of this discussion it would .seem to be advisable
to increase the wire sigzes. There are objections to this, however,
due to the condition of the hull when the gas bags are partially
deflated.
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General Theory of Stresses in Rigid Airship ZR-1,
Secondary Siresses.
Consider a stiff member acted on by forces and moments as
shown by Fig, 8. Iet mementys and rotations in counterclockwise

dlrection be rositive, also deflections.

2
Change of slope = ¢ - Oy = J M%% (Origin at B)
o

. a,
Total deflection = Ay = a,L + bf Mx}%%

Mo=M, + Kx

L . L P L2
. o dx dx 1 b
0 = P = S Mpg gr+ [ FoX g7 < Ey (hpal + —37)
L L M, L2 PpI®
. ax dx _ 1 ba. 3
Bpa = Gl + of ¥pa* g1 + J Ppx®gr = %al +E‘f{*—g—+ 5/
Map, = Mps, + Ppl *
A : -
« %pa = %l + = [SMap - PpL]

Substituting My, - Pyl for M, and value of PpL. from
84. 1 in edquation for ¢ - O, we have

-1 3 Ay

A
(2) S Mgy = 2]21 (%Lba - 30, -0.)

See Fig. ©.

Consider a transverse member ED of length h making an
angle €,3 Wwith vertical., Assume joint E to rotate in vertical



plane ZEX through an angle &,, and joint D +to deflect longi-
tudinally a distance Ay, and rotate in vertical plane parallel
to ZEX through angle g3, Since deflection of one frame rela-
tive to another, which produces secondary stresses and rotation
of joints, is vertical, rrntations of joints laterally are of sec-

ond order and hence are neglected. See Appendix I,

In the plane DEE! +the rotation of D is Gdcoseed and of
E is Ggco88.43.

The bending moment at E of ED in plape DEE' is there-
fore given by equation (2) as follows:

b 2E1 34 \
(3) M2y = ‘E‘g§'<3“ﬁdg ~ B cos€eg - Gdcoseed)

In plane perpendicular to DEE* joint E rotates through
angle @.8inB,y and D rotates ®;5infg,q producing in ED a

counterclockwise torsional moment at - !

= ut _(QE,- % )sing 4gEqlg o
(3a) E= Med = h

The compenents of these moments about axis BY are

yB

t .
edcoseed and MedSIHGed'

See Fig, 10,

Equations for member EF are similar.

t, A - |
(4)  Mger = —2%5%'-(—11@' - T f-gi'-i from eq, 1.

ZEIepv 3‘Aee! _

(5) Moot = L ( I~ 3%y — g1y from-eq. 3.
ZET v Do P..uls

(6) Mgen = Tﬁ-ﬂ GI-'-QE - C"e>¢ —-g—e-— from eq. 1
3BT . u/34 1" .

For equilibrium, Z moments about axis EY = 0
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Therefore,

(8) Meey+Meen+Mgdcoseed+M§dsineed+Hgfcoseef+M§fsineef=0

Assume that %

oints D and F do not deflect out of plane of
transverse frame

see p. 1),
then -84, and &, = O

Substituting in (8) values of moments given by (3), (3a),
(5) and (7), and for convenience let

A

' A
Lee = Rel and Lee = Ren, then
—2'%;'(3Rel + 3 Reu -4-?8 - e,}- 'G.e" )
_ ZEIQQ

5 [(20%, + Tt3lcos®0gq + (B0 + C5)cos®O4s ]

Epl |

. Ieg I.e
Sinée h is constant, let %% =gq 7 ‘ and
Eplp  _ Eply _ 208Ieg _ o o Zee'E
Tea m then. n h mq L

(9) . %o [ 4+2a(c08%@ (g+0082 B ¢)+am(sin®g p+8inf64) ]

+#03 q(cos®e o 3-mein®e o 4) +%-a(cos®l cp-msin®6 o¢)=

= ZRgt+3Rgn—0g1-n

In eq. (9) are 5 unknown Quantities, Og, Ggr, Tgn, &5 and
o ALl joints of one transverse frame will rotate in the same
direction, hence @4 may be assumed = 0y = Qe in eq. (9) with

small resulting error, Since Ogr and agn depend on secondary
#tresses in next frame space it is not possible to solve for them

(s #
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directly, so it is necessary to assume that longitudinals a% E!
and E" remain perpendicular to frames E'F'D' and EYF®DY  re-
spectively.

To Ggr = Bg (see p.1).

Since counterclock rotation of frame E"F"D"(+0gn) ooccurs
when AL, is negative, Qgn = = ggn,

Substituting in (9)
3Rgn + 3Rgt - ge! + gen
4 + 3g(cosg 4+ c08%6 op)

G-e::

(lO)_

In eq., (10) the torsional effect has disappeared since Uy
was assumed equal to oy and ag.

By change of notation in eq. (10},

o = SRB" + 3Reg - ge: + gen

4 + 3q(cos®gggq+ 006 g.)

which does not agree with assumption that % = % by an amount
(cosaedc - cosaeef)Sq in denominator. However, the resulting
error in value of %5 1is small (see Appendix 2).

Substituting value of &, and g in ed. (5),

o 3EI

o mermm—

. 3Rot + 3Rgn — get + Zgn
eel™ 1, (3Ref -2

~ get)
4 + 3g{cos26eg + COS2Per)

Let 3(cos?f,5 + cos?€¢) = Z¢ a(cos®l o5 + coef B3,) = 24 ete.

(11) o M_ .1 = —B—E-l [(2 + 323) (333‘ - gé) - GRe" - den ]
~ L 4 + 32

Substituting value of &g and Ggn in ed. {(7)

_ 2L (2432¢) (3Re"+gen)- BRet+ 38a1q
=L

(12) ¥ 4 4 EZe

ee”



et = Oygr + Oy for left panel (see B. 1)

Been = Bygn - Dypn  gince + moment produces - defl,
Ay, = 1 pFL 1 ‘
Ve ™ [Ed - g(J + 5 Lag)] (p.8)
= 1 "
J =J' -2 LAy (p.8)
. _1 fFEL 1
*rs Aeef A;d[ Ed - gelJ:j + 2 ge’L
t
A, _, F! 1 Ji
—L8' - R ¢ = - ——
et = + Eet /
L A'dEd (2 LAY -/
A, 1 Jk
L e = Ee <_ + LA“a)
: s'L s"L
Bot = g
© T Ey e ~ Eryy,
Substituting in (11)
2RI _ 3R 1 3y 6F "
Megr= —B81_ 32 ) [———tBgar (= = — N _g1] -
ce L(4+32,) {[34- el [A’dE Bl 3 1A'y 8e! A7 oEg +
I
1 n
+6gen(‘2m - Bgen}
SF' 5! 6J, 6 , F! Fr
13} Mo or=—28 - N - 3\
. s'+s® __8 S'Jl "J

“Vim  DVgm 8'a A"c’a/

When all wires act J} = J) = 0, Ay = Al and eq (13) becomes

21 Si FI_FH B|+Bn
(14) Moor =55 <32, [ + =T ¥
ee 4432 o i ®"nAgl " 3y L Ad vy, }

By making similar substitutions in (123) and collecting,



2l ot 3EH 6J’ Ft Fis
~ Zeel >
(18) Meen = 755~ {3%¢ EHA&L ayL(l + 158 ) hR nL(A,‘ el
- ﬁ’jan SI!JJlI _ IJI \
: %, LYL ( 3y
When a2l1l wires ack,
8l gn " n n_wt Wyl
(16) Mgen = =28 _J 3z [ SF® _ 8"y B8 [ FI-F'y _ siye!
Then F! =F" =0, s' =g" gince ! = M}, and equa. (14)&(15)
reduce to Moo = I o1 = Esrl Mgen = = Igan sl
L Iy,
¥hen F*" = ~ F? and N =0
- F* _ . _F'
Moot = 6Iggn . Mgen = - Blep! i
M I
From eq. (4) - Pee' = . Lee' - Giage' (Rat - ae)
Substituting value of Moot from eq. (11l) and oy from {(10)
6EI R, — - B8R -
ee! = —?'QQL [(2‘1’323) (34{9_’32‘%3') BReu —2gn -~ Reg' +
e
+ 3Ret +3§_ieu-ge: +Een]
44324
Substituting values of R, and g, (8ee p.33)
(17} P 61 e {GZe+5 Ft 8l s'-st 3 gtJ!
t - - -—
ee L(4+326) LAYy n Yy, 2yy, LAY vy,
When all wires act,
(18) Po.n = 6 .+ [(6Ze+S)F'_ 3F"_s'-st,
&e” ~ L(4+32,) LAgn Agn — 2y,
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Simiiarly,

Bl..n ;6Z,45 FU s"J'  g"-g' 3 F' s
(19) Pegn = ge { S - J+ 5. " Tailn " i
L(4+3Z,) Y LA"3 "n Vi, 3y, L YL

. When gll wires act

BI (8Z +5)F" 3FT g"-g!
(20) Pgon = ——88= e - N 1
L(4+32%¢) LAsn LA4n 3yy,
When F! and F" = O, Pegi= 0 and Pget =0

When M! =0 and Ft = - B!

13T__,F!?
- —_ce "
Pee'L = IJAdL =2 X Meer
121 pnF"
Peerl = -—nzﬁi‘— = 2 x Meen

Special cases:

1
When F' = F" = 0 Mggr = Iger - and Pegr = O

L

cet

Let e = distance from neutral axis of longitudinal to any
fiber and &, = gecondary unit stress.

!
Then s, = e £~

Total unit stress on this fiber =

i 1 '
s' + 8 =S'+e§—=—s——(y+e)

® ¥ v, L

This indicates that for this case the unit stress in anyi -
part of a longitudinal is proportional to the distance of that
part from the neutral axis of the ship.

When F" = - F' and M! = M! =0

! M_

Mgt = GIeengzgi , P = —88-
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These formulae check against the formula for thg deflectlon
of a fixed ended beam locaded in the center. Deflection of bean
of span = 3L with load w at center =

wx(2L)® _ _wl’

Ay=
192ET 24E1
and moment of center = z%ﬁ) =M, = 3%
3 =
S Ay o= foL
8EI1
From eq. (V) p.6 Ay = 22 when M' =0
AsEg
. MJI? FL
T BEI T A4Eg
= _6FI _
uc . nAd_L - Mee'
—_— 4!'[ 4:Mep|
w = Lc =L = 3 Pgeg!

Computations made hereinafter for the numerical value of sec-
ondary stresses show that the terms involving s and s' are very
small relative to the shear terms, Therefore it will usually be
sufficiently accurate to omit them. In Design Memo #18, Mr. Bur-
gess has suggested that they be combined with the primary stresses,
which is also satisfactory. The omission of these iterms reduces
the formulae to simpler form., If alsoc we let ¢ = distance from
¢c. of g. of any channel of a longitudinal to a horizontal axis
through the c. of g. of the member thern the stress in the member
will be Megrc/Iget and if we substitute Dy = 1(4 + 33g)

¥ 14
then 8Sggt = nASOL(F' —-(F—]';E—}——) = secondary unit stress in member
a e EE!
8c Fisp!
Sgen =n§f~'_(F" -(-——;——)-}= secondary unit stress in member EE™
51 1. 5(F!'+F")
Pogt = —nz-cel%'-(aﬁ'l—_ Dy )=secondary shear in member ER?
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%, e
Pae® = S%ﬂfg(zpn - l's(i + ))=secondary shear in member EEB®
d e

Formulae follow similarly for secondary stresses in the tranverse
members,

The term Z involves the two angles 6 of the transverse mem-
bers adjacent to it, and it should be kept clearly in mind that
these members extend from main longitudinal to main longitudinal,
and not to the intermediate ones. Let u be the angle made with
the horizontal by the radius to the joint in question (say E),
this angle being measured in the vertical plane. This radius ap—
rroximately bisects the angle between the two transverse members
'at the joint (except at the M girder). Draw a tangent line at
the joint, perpendicular to this radius, and let the angles be-
tween it and the transverse rembers be b. Then it is clear that

6ed =u+ b, and that §ge =u - b.

Then Z¢=q(cos®Beg+cos®Pre)= qlcos® (ug+b)+ cos® (ug- b) )
=q(1l+cos3ugcos2b)

and %(4+323) = (32 + 1.5 q) + 1.5 g cosbcosdu = Dg

In this expression it is seen that 4 and ® are constant for a
ship of the customary design which hag equal panels on 234 out of
35 sides, and that u is the only variable., Attention is calleg
to the fact that when u reaches the value of 45°, ard 3u = 907,
then cos3u becomes negative, so that if b could be zero when

u = 90°, then D, would reduce to 3, because the q terms would
cancel, Such an assumption, however, is not warranted because
cos2b has a constant value of about 0,88, In studving the varia-
tion of the secondary stresses from longitudinal A to M, it
should be noted that the distance ¢ for apex channel varies as
the sin u, but although this term diminishes, proceeding from

A to M, the term Dg at first increases, so that the parenthesis
as a whole increases and the variation of stress is therefore
complex. Such a study shows, however, that the secondary stresses
are maximum for C, D, E, and I, J, K, rather than at A or M orG.

Secondary stresses - Appendix I.

Degree of error involved in neglecting lateral moments. See Fig.1ll.
Consider 4 stiff members as shown in sketch with transverses

EA and AD inclined at angle 8 to vertical. If D,E,C are

fixed for rotation and deflection and B is fixed for rotation

and deflects vertically a distance A, :

component of A in plane DAB = O cos 9
component-of A perpendicular to plane DAB = A sging
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Let My, be bending moment in 4B a% A about axis perpen-
dicular to DAB (i.e. radial axis)

M* = gorresponding moment about tangential axis,

From eq. (2)

dklab(3A cos8 _ 5

g, - 0
L L & )

Map =

2EI
Mag = —72(0 - Bag - 0)

2ETI
Ma.<'3.=“—']—15“‘:1(0 - 30, - 0)

2EI
Ha‘ez—ﬁa"e(o - Zaa- 0)
Iag - Jae - 4 Iab
For equilibrium ZM = O, Let h =5 = a T
. 3Acosg

o, =
& 7 41(1+8)

. FI' 3EI (3Acose _ SAcosé
T Tab T L L BL(1+4)

BEI pAG0SE , 1+33
L® +q /

Taking the moments about tangential axis, neglecting torsion
in AD and AE

MLy =0 M, =0
SEl'ap (3Asine .

3EI'
Mé.c =_L_§_C_( - Zﬁ-'a,)
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M =0 o C!.'a = ______6_3[34;111

It 2ErI 3Asing 3Asing
Let ab ab . _£ - :
=T, then M? ab L \ L 21, )

]

SErIab Asing

The resultant moment will be inclined to plane DAB by an an-
gle Y% s see Fig, 13, and

Vi 3Erlap . Asin@/, 3EIgp Acose (1+3q)

tan ¥ =
Mat Ay . (1+q)

1 9
tar8Xxr (1+2q>

For the 2R-1,

Iip I for tang.axis 13.4
Inp I for rad.axis 5,05

o

r

= 3.48 for malin longs.

for main transverse frame I is constant for any axis.

I._ =79 h = Zm. L=5m . a=-—2-x3_33
ae am °m - Sl
S tanY = tané X 2,468 X -3—'-5—1=1.45 tané
5. 63
Y - . 45 %a;
tan(y--g) = tan’) tan6 ng

1 + tany tanf6 1 + 1.45 tan- @

To find maximum inclination of resultant moment to vertical
plane (Y -g), differentiate and equate to zero.

d tan(¥ -€)_ .45(1 + 1.45 tan®p )-.45 tane(2.9 tan@ ) |,
d tan® {1 + 1.45 tane):
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——— o
=, for max. tan(Yy -6 ), tang = /.69 = .83 g = 38°45°
45 X .83
’ - = = - = .187
s, max. tan(Y -8) T, 1.45 x .83°
s {Y.-e )max = 10°30!
since. cos 10°3G' = 0.983, the maximum error in resultant mom-
ent due to neglecting lateral component is 1. 7%.
Secondary Stresses - A pendix 3.
Error in value of Gg due to assumption tﬁat a3 = Gg = A¢

Eq. (9) 9 [4+28(c0s®f g+ cOB®Ber)+ am(sin®6op+ 5in®@gg)] +

Gy alcos20gg - m 8inPgg)+ %palcos®Ber — m sin®6g¢) =
= 3Rg + 3Rg - Ggr - Cgn.

Since aé and G; were assumed = gb and g7 respectively,

the right-hand term of this equation is a constant for any given
cordition of loading. Call this constant "CF%,
0y was assumed = Gg .. from eq. (10)

C
a. =
4 7 443q(cos®8eg + c0s®Oer)

but since eq, (10) is a general equation for any joint, by change
of motation,

C

Qa = -
4+3q(cos Beg + €08 6 gg)
ed c

Calling the first value G4y, the second Oy, and the difference
cgs bthen ¢4 = %q - %g;, and similarly & = Qe - Cp

€g = @, - G, where a, is value corresponding

to O3 and Oy, is value from ed. (10).
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From eqd. (9), by changing subdcripts and subtracting ©& from %,

(31) . €g [4+23q(c0s2R gt COB2 Q)+ am(sin®geg+ sin®€er)]

+ €3 qcos® By - m 5in®Bgg)+ €paleos2egr - m 8in€er ) = O

O Ogn 4+3q(cos® Bog + c08° E3c)

%ﬂ _ 3q(cos”p 4 - cos®e..)
et

and %
4+3G{cos?p or + cos®Brq)

by changing subscripts.

Let ocus?B4q = u, 00s0ge =V, C082Bgr =W and oos’ffrq = 2

2q cos?@ + qm 8ir’6 = q [ (3 - m)cos®g + m ]

cos2p — m girfe = coge (1 + m) - m

Dividing eq. (21) by o., and substituting above values,

: = (u~w) [v(l+m) — m)
Eﬁ: E4+Q(2~m) (vaw)+ 2gm ] = 3Q° { 2 Z quu :mv) +

(z-v) [w(lsm) - m]
* 4 4 3w + 2)

E
For the ZR-1 g = 3,31 (see p.38) and since Iy = 2lgg, m = 'E—m

which we will assume = -;'-

(u-w) (3v-1) (z-v) (3w-1)
€q 8 437 (uev) T TE:7 (wez) ]

ea” g, 31 4+ 3.47(v4w) .

Values of the ratio EE:— expressed in % have been plotted in
1

Fig. 13 for one quadrant of regular 234 sided ship, This curve shos.
maximum discrepancy to be 8% and occurs for tor longitudinal., As
this iS merely the discrepancy betiween vaiue of &, from eq. (10)
and value found by change of notation, the true value of a for any

joint will differ from value computed from eq. (10) by less than the
plotted discrepancy. '
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Computation of Combined Primary and Secondary Stresses

in Frame Spacg 80 - 90.

Case (a) -~ Maximum tensile stress, "O" girder, Bow 6° down.

Frame number #80 #90 #100
ghear: Dynamichemo #6, Table IV) - 530 -1059
Static n 6, f Via) =3190 +3835
Moment :Dynamic 222080-2720 216780 +2836 206190
(hog'sk
S i . 3 138630 177460
tatic 180530 (hQ§Q§
383610 35541.0 383850
_ {(hog'd
Moment at center of frame spa ce=M' 369010 269530
Unit bending stress (M'x0.0199) +7350#/s. in. +7260#/ 8. in.

(See Memo. #7, Table 3)
Secondary bending moment in member 80-90 at joint €0 =(eq.(14),p.58)

2T 0t s'\ 6 s'+s”

Moot = 3 + Ft — F") 4 ———
cc! 'ng'c(m§, 2yg, / mgf b+ v, /

Zo = a(co828pe + €0826gg) = 3. 31(cos?75, 5% cos?46.5°)

= 32.31(0.35 + 0.688%) = 1.24 3%, = 3.73
n 5 Eg/E;, = 2.88 Ag = 0.057 (See Table 5, Memo. #7)
L = 10 met. = 394" nAgL = 2.86 X 0.057 x 394" = 64.2"
F' = -2730 F" = 42826 ' = 47350 &* = +7360 yy = 410"
3(~3720) 7350 8
M 3.73) -2720 -~ 282356)
oc' T 4z 73( 5 *3an’ teis (
7350 4+ 7260\ _ .
+ o = -2411_,: in 1bs,

The negative sign indicates a clockwise moment, i.,e., tension on the
lower channels and compression on the apex channel,

For girder "C" the distance from the horizontal neutral axis
to c. of g. of lower base channel is about 7", hence the section
modulus will be I,5:/7,
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i

241 Icc'/Icc'/7 = 343 X 7
1887 1bs,per s4, in. tension,

therefore, unit stress in base ohannel

also, unit stress in apex channel = 241 X 7,5 =
1800 lbs, per s4q, in, compz,

Therefore, the maximum combined stress for this case will be:
(See Des. Memo. #7, Table 9. )

Initial stress -1280 l1lbs. per sd.in.
End load s! +7350 1lbs, per sq,in.
Gas pressure bending str., +6637 lbs. per sd.in.
Secondary stress +1690 lts. per sq, in.

Total combined stress +14459 1bs. per sd. in.
Case (b) - Maximum compressive stress, "A" girder, Bow 6° up.

Frame number #80 #20 #100
Shear: Dynamic{Memo.#8,Table IV) + 5308 +10594#"
Static ( " #8, v VI) 46244 +1449%,
Moment:Dynamic -222080 -4094#}-216780 +2508#1-306190
Btatic : sag'g)
Static + 570860 ° + 10820 + 325310
(nog'g)
-165020 ~205960 -180880
{hog'g)
Moment at center of frame space=M! ~-185490 -183420
Unit bending stress (M' X 0,0234) ~ 4150#/s.in. - 4330#/s.in.
(See Memo. §7, Yable 3.)
2, = 2.31(0.35°+ 0.35°) = 0,29, 32,=0,87, y;=467"(Memo, #7, Table 1)
F! = -4094, F® = 42508, s!' = -4150, 8" = -4330

2T, 3 X -4094  -4150 5
M., = —=8a" N -4094 - 2508
aa! 4+O.87(0'87( 60.2 T 3 x a6/ " REY )

-4150 - 4330\ _ 2 X 804,

- = -3321
+ 467 J 4.g7 aa' aa’

The negative sign indicates a clookwise moment, i.e, a compression
on the apex channel.

For girder "A" the distance from the (horizontal) neutral axis
to 8. of g. of apex channel is about 8, 3" hence the section modulus
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therefore, unit stress in apex channel = 332 X 8.3 (as before)

= 3780 1lbs.per sq, in,compzr.

Therefore, the maximum combined stress for this case will be:
(See Des. Memo. #7, Table 9).

Initial stress -1175 1be. per sd.in.
End load gt -43150 lps., per qu?n-
Gas rressure bend. stress -8305 lbs. per sd,1in
Secondary stress -2760 lbs, per sd.1in,

Total combined stress -18390 lbs. per sq.in. (compressed:

*

Comments: The theory as evolved for secondary stresses is based upon
the deflection of one frame with refercnce to another, and the de-
flection used herein is that figured under primary stresses. In re-
ality the secondary bending momenis of the longitudinals help to
resist this shearing deflection, and therefore the resultant deflec-
tion is less, i.e, the secondary stresses will be somewhat reduced
(perhaps 5 or 10%), On the other hand, these computations neglect
the rigidity of the secondary transverses (a panel length of 10 me-
ters being nged)} and are therefore somewhat too small on that ac-
count, because if these are considered the restraint is increased,
the angle of curvature at the main traneverses is increased, and
therefore the bending stresses. However, these two effects will
more or legs balance, and it is probavly sufficiently accurate to
use the stresses set forth above. (If anything, the stresses are
larger than those set forth, rather than smaller, )
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